A low-dissipation HLLD approximate Riemann solver for a very wide range of Mach numbers

نویسندگان

چکیده

We propose a new Harten-Lax-van Leer discontinuities (HLLD) approximate Riemann solver to improve the stability of shocks and accuracy low-speed flows in multidimensional magnetohydrodynamic (MHD) simulations. Stringent benchmark tests verify that is more robust against numerical shock instability accurate for low-speed, nearly incompressible than original solver, whereas additional computational costs are quite low. The novel ability enables us tackle MHD systems, including both high low Mach number flows.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LRoe: A low-dissipation version of Roe’s approximate Riemann solver for low Mach numbers

A modification of the Roe scheme aimed at low Mach number flows is discussed. It improves the dissipation of kinetic energy at the highest resolved wave numbers in a low Mach number test case of decaying isotropic turbulence. This is done by scaling the jumps in all discrete velocity components within the numerical flux function. An asymptotic analysis is used to show the correct pressure scali...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics

A new multi-state Harten–Lax–van Leer (HLL) approximate Riemann solver for the ideal magnetohydrodynamic (MHD) equations is developed based on the assumption that the normal velocity is constant over the Riemann fan. This assumption is same as that used in the HLLC (‘‘C’’ denotes Contact) approximate Riemann solver for the Euler equations. From the assumption, it is naturally derived that the R...

متن کامل

A low Mach number solver: Enhancing applicability

In astrophysics and meteorology there exist numerous situations where flows exhibit small velocities compared to the sound speed. To overcome the stringent timestep restrictions posed by the predominantly used explicit methods for integration in time the Euler (or Navier–Stokes) equations are usually replaced by modified versions. In astrophysics this is nearly exclusively the anelastic approxi...

متن کامل

An upwinded state approximate Riemann solver

Stability is achieved in most approximate Riemann solvers through ‘flux upwinding’, where the flux at the interface is arrived at by adding a dissipative term to the average of the left and right flux. Motivated by the existence of a collapsed interface state in the gas-kinetic Bhatnagar–Gross–Krook (BGK) method, an alternative approach to upwinding is attempted here; an interface state is arri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110639